Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae.

نویسندگان

  • Reut Hazan
  • Alexandra Levine
  • Hagai Abeliovich
چکیده

Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae.

Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributio...

متن کامل

The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast.

Exposure of Saccharomyces cerevisiae to sorbic acid strongly induces two plasma membrane proteins, one of which is identified in this study as the ATP-binding cassette (ABC) transporter Pdr12. In the absence of weak acid stress, yeast cells grown at pH 7.0 express extremely low Pdr12 levels. However, sorbate treatment causes a dramatic induction of Pdr12 in the plasma membrane. Pdr12 is essenti...

متن کامل

Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii.

Weak organic acid food preservatives exert pronounced culture pH-dependent effects on both the heat-shock response and the thermotolerance of Saccharomyces cerevisiae. In low-pH cultures, they inhibit this stress response and cause strong induction of respiratory-deficient petites amongst the survivors of lethal heat treatment. In higher pH cultures, 25 degrees C sorbic acid treatment causes a ...

متن کامل

Weak acid and alkali stress regulate phosphatidylinositol bisphosphate synthesis in Saccharomyces cerevisiae.

Weak organic acids are used as food preservatives to inhibit the growth of spoilage yeasts, including Saccharomyces cerevisiae. Long-term adaptation to weak acids requires the increased expression of the ATP-binding cassette transporter Pdr12p, which catalyses the active efflux of the weak acids from the cytosol; however, very little is known about the signalling events immediately following ap...

متن کامل

Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae.

The mechanisms by which the weak acid preservative benzoic acid inhibits the growth of Saccharomyces cerevisiae have been investigated. A reduction in the pyruvate kinase level, which decreases glycolytic flux, did not increase the sensitivity of yeast to benzoic acid. However, a decrease in 6-phosphofructo-1-kinase (PF1K), which does not affect glycolytic flux, did increase sensitivity to benz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 8  شماره 

صفحات  -

تاریخ انتشار 2004